Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
1st International Conference on Artificial Intelligence for Smart Community, AISC 2020 ; 758:217-230, 2022.
Article in English | Scopus | ID: covidwho-2148646

ABSTRACT

Detection of the novel Corona virus in the early stages is crucial, since no known vaccines exist. Artificial Intelligence- aided prognosis using CT scans can be used as an effective method to identify symptoms of the virus and can thus significantly reduce the workload on the radiologists, who have to perform this task using their eyes. Among the most widely used deep learning convolutional neural networks, research shows that the Xception, Inception and the ResNet50 provide the best accuracy in detecting Covid-19. This paper proposes that using General Adversarial Network (GAN) as a data augmentation technique, in combination with these models will significantly improve the accuracy and thereby increase the chances of detecting the same. The paper also compares and contrasts how each of the three GANs namely DCGAN, LSGAN, CoGAN, perform in association with the aforementioned models. The main aim of this paper is to determine the most credible GAN network to carry out the task of data augmentation as well to prove that involving GANs would improve the existing accuracy of our model, paving way for an effective approach to train the model. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2.
2022 IEEE World Conference on Applied Intelligence and Computing, AIC 2022 ; : 320-325, 2022.
Article in English | Scopus | ID: covidwho-2051924

ABSTRACT

COVID-19 has had a lasting effect on the human population around the globe. originating from Wuhan, China, in December 2019, the virus managed to spread worldwide in a short time. Huge waiting time between the detection of symptoms and clinical confirmation of the virus being present in the body has made the virus more fatal;thus, rapid screening of large numbers of suspected patients is essential. Due to inefficiency in pathological testing, alternate ways must be devised to combat these issues. Due to advancements in CAD, integrating radiological images with Artificial Intelligence (AI) can detect the disease accurately. This study proposes a deep learning model for automatic COVID-19 detection using raw Chest X-ray (CXR) images. With 17 convolutional layers, the proposed model is trained to diagnose COVID-19 with an 96.67% accuracy. The model can be used to help the world in numerous ways. © 2022 IEEE.

3.
Mater Today Proc ; 56: 3556-3560, 2022.
Article in English | MEDLINE | ID: covidwho-1796359

ABSTRACT

Past couple of years, the world is going through one of the biggest pandemic named COVID-19. In the mid of year 2019, it is a very difficult process to predict the COVID-19 just by viewing the images. Later on AI based technology has done a significant role in the prediction of COVID-19 through biomedical images such as CT scan, X ray etc. This study also implemented the deep learning model for the prediction of COVID-19 through X-ray images. The implemented model is termed as XR-CAPS which consist of two models such as U-Net model and the capsule network. The U Net model is used for performing the segmentation of the images and the capsule networks are applied for performing the feature extraction. The XR-CAPS model is applied on the X-ray images for the prediction of COVID-19 and the evaluation of the model is done by three parameters that are accuracy, sensitivity and specificity. The model is compared with other existing models like ResNet50, DenseNet121 and DenseCapsNet, this has achieved an accuracy of 93.2%, sensitivity of 94% and specificity of 97.1% which is better than other states of the art algorithms.

4.
4th International Conference on Intelligent Computing and Optimization, ICO 2021 ; 371:391-396, 2022.
Article in English | Scopus | ID: covidwho-1626262

ABSTRACT

The novel coronavirus spread across the world at the start of 2020. Millions of people are infected due to the COVID-19. At the start, the availability of corona test kits is challenging. Researchers analyzed the current situation and produced the COVID-19 detection system on X-ray scans. Artificial intelligence (AI) based systems produce better results in terms of COVID detection. Due to the overfitting issue, many AI-based models cannot produce the best results, directly impacting model performance. In this study, we also introduced the CNN-based technique for classifying normal, pneumonia, and COVID-19. In the proposed model, we used batch normalization to regularize the mode land achieve promising results for the three binary classes. The proposed model produces 96.56% accuracy for the classification for COVID-19 vs. Normal. Finally, we compared our model with other deep learning-based approaches and discovered that our approach outperformed. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

5.
Cmes-Computer Modeling in Engineering & Sciences ; 130(2):855-869, 2022.
Article in English | Web of Science | ID: covidwho-1579257

ABSTRACT

Many people around the world have lost their lives due to COVID-19. The symptoms of most COVID-19 patients are fever, tiredness and dry cough, and the disease can easily spread to those around them. If the infected people can be detected early, this will help local authorities control the speed of the virus, and the infected can also be treated in time. We proposed a six-layer convolutional neural network combined with max pooling, batch normalization and Adam algorithm to improve the detection effect of COVID-19 patients. In the 10-fold cross-validation methods, our method is superior to several state-of-the-art methods. In addition, we use Grad-CAM technology to realize heat map visualization to observe the process of model training and detection.

6.
Complex Intell Systems ; 7(6): 3195-3209, 2021.
Article in English | MEDLINE | ID: covidwho-1406188

ABSTRACT

The COVID-19 pandemic has caused a global alarm. With the advances in artificial intelligence, the COVID-19 testing capabilities have been greatly expanded, and hospital resources are significantly alleviated. Over the past years, computer vision researches have focused on convolutional neural networks (CNNs), which can significantly improve image analysis ability. However, CNN architectures are usually manually designed with rich expertise that is scarce in practice. Evolutionary algorithms (EAs) can automatically search for the proper CNN architectures and voluntarily optimize the related hyperparameters. The networks searched by EAs can be used to effectively process COVID-19 computed tomography images without expert knowledge and manual setup. In this paper, we propose a novel EA-based algorithm with a dynamic searching space to design the optimal CNN architectures for diagnosing COVID-19 before the pathogenic test. The experiments are performed on the COVID-CT data set against a series of state-of-the-art CNN models. The experiments demonstrate that the architecture searched by the proposed EA-based algorithm achieves the best performance yet without any preprocessing operations. Furthermore, we found through experimentation that the intensive use of batch normalization may deteriorate the performance. This contrasts with the common sense approach of manually designing CNN architectures and will help the related experts in handcrafting CNN models to achieve the best performance without any preprocessing operations.

7.
Biomed Signal Process Control ; 70: 102987, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1338364

ABSTRACT

The novel Coronavirus named COVID-19 that World Health Organization (WHO) announced as a pandemic rapidly spread worldwide. Fast diagnosis of the virus infection is critical to prevent further spread of the virus, help identify the infected population, and cure the patients. Due to the increasing rate of infection and the limitations of the diagnosis kit, auxiliary detection tools are needed. Recent studies show that a deep learning model that comes up with the salient information of CT images can aid in the COVID-19 diagnosis. This study proposes a novel deep learning structure that the pooling layer of this model is a combination of pooling and the Squeeze Excitation Block (SE-block) layer. The proposed model uses Batch Normalization and Mish Function to optimize convergence time and performance of COVID-19 diagnosis. A dataset of two public hospitals was used to evaluate the proposed model. Moreover, it was compared to some different popular deep neural networks (DNN). The results expressed an accuracy of 99.03 with a recognition time of test mode of 0.069 ms in graphics processing unit (GPU). Furthermore, the best network results in classification metrics parameters and real-time applications belong to the proposed model.

8.
Biomed Signal Process Control ; 68: 102583, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1163451

ABSTRACT

Due to the unforeseen turn of events, our world has undergone another global pandemic from a highly contagious novel coronavirus named COVID-19. The novel virus inflames the lungs similarly to Pneumonia, making it challenging to diagnose. Currently, the common standard to diagnose the virus's presence from an individual is using a molecular real-time Reverse-Transcription Polymerase Chain Reaction (rRT-PCR) test from fluids acquired through nasal swabs. Such a test is difficult to acquire in most underdeveloped countries with a few experts that can perform the test. As a substitute, the widely available Chest X-Ray (CXR) became an alternative to rule out the virus. However, such a method does not come easy as the virus still possesses unknown characteristics that even experienced radiologists and other medical experts find difficult to diagnose through CXRs. Several studies have recently used computer-aided methods to automate and improve such diagnosis of CXRs through Artificial Intelligence (AI) based on computer vision and Deep Convolutional Neural Networks (DCNN), which some require heavy processing costs and other tedious methods to produce. Therefore, this work proposed the Fused-DenseNet-Tiny, a lightweight DCNN model based on a densely connected neural network (DenseNet) truncated and concatenated. The model trained to learn CXR features based on transfer learning, partial layer freezing, and feature fusion. Upon evaluation, the proposed model achieved a remarkable 97.99 % accuracy, with only 1.2 million parameters and a shorter end-to-end structure. It has also shown better performance than some existing studies and other massive state-of-the-art models that diagnosed COVID-19 from CXRs.

9.
Mach Vis Appl ; 32(1): 14, 2021.
Article in English | MEDLINE | ID: covidwho-1060597

ABSTRACT

Till August 17, 2020, COVID-19 has caused 21.59 million confirmed cases in more than 227 countries and territories, and 26 naval ships. Chest CT is an effective way to detect COVID-19. This study proposed a novel deep learning model that can diagnose COVID-19 on chest CT more accurately and swiftly. Based on traditional deep convolutional neural network (DCNN) model, we proposed three improvements: (i) We introduced stochastic pooling to replace average pooling and max pooling; (ii) We combined conv layer with batch normalization layer and obtained the conv block (CB); (iii) We combined dropout layer with fully connected layer and obtained the fully connected block (FCB). Our algorithm achieved a sensitivity of 93.28% ± 1.50%, a specificity of 94.00% ± 1.56%, and an accuracy of 93.64% ± 1.42%, in identifying COVID-19 from normal subjects. We proved using stochastic pooling yields better performance than average pooling and max pooling. We compared different structure configurations and proved our 3CB + 2FCB yields the best performance. The proposed model is effective in detecting COVID-19 based on chest CT images.

10.
Inf Fusion ; 67: 208-229, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-846585

ABSTRACT

(Aim) COVID-19 is an infectious disease spreading to the world this year. In this study, we plan to develop an artificial intelligence based tool to diagnose on chest CT images. (Method) On one hand, we extract features from a self-created convolutional neural network (CNN) to learn individual image-level representations. The proposed CNN employed several new techniques such as rank-based average pooling and multiple-way data augmentation. On the other hand, relation-aware representations were learnt from graph convolutional network (GCN). Deep feature fusion (DFF) was developed in this work to fuse individual image-level features and relation-aware features from both GCN and CNN, respectively. The best model was named as FGCNet. (Results) The experiment first chose the best model from eight proposed network models, and then compared it with 15 state-of-the-art approaches. (Conclusion) The proposed FGCNet model is effective and gives better performance than all 15 state-of-the-art methods. Thus, our proposed FGCNet model can assist radiologists to rapidly detect COVID-19 from chest CT images.

SELECTION OF CITATIONS
SEARCH DETAIL